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Abstract
Chains of Darboux transformations for the matrix Schrödinger equation are
considered. A matrix generalization of the well-known for the scalar equation
Crum–Krein formulae for the resulting action of such chains is given.

PACS numbers: 11.30.Pb, 03.65.Nk, 02.30.Ik

1. Introduction

Let us consider the matrix Schrödinger equation

h0�E = E�E h0 = −D2 + V0(x) D ≡ d

dx
(1)

where V0(x) is an n × n Hermitian matrix with x-dependent entries, �E = (ψ1E, . . . , ψnE)t

is a vector of an n-dimensional linear space, and E is a number which plays an essential
role in different physical applications. For instance, a multichannel quantum system may be
described by this equation [1]. One of the most interesting applications of this equation consists
in the possibility of involving the supersymmetric quantum mechanics [2] for describing the
scattering of composite particles such as atom–atom or nucleon–nucleon collisions [3–5]. In
particular, in this way one can interpret an ambiguity between shallow and deep potentials of the
nucleon–nucleon interaction [5]. To get a qualitative result, supersymmetric transformations
were successively applied in [3–5], which required performing a lot of unnecessary work.
In this way one can realize only a few transformation steps. We believe that progress in
applications of this method is essentially delayed because of the absence of a simple possibility
of getting rid of intermediate Hamiltonians and going directly to the final result of a chain of
transformations. We notice that such a possibility exists for the usual (scalar) Schrödinger
equation, being given by the known Crum–Krein determinant formulae [6, 7] which made
it possible to get a number of new interesting applications of one channel supersymmetric
3 On leave from: Physics Department, Tomsk State University, 634050 Tomsk, Russia.
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quantum mechanics in describing the nucleon–nucleon scattering [8]. Nevertheless, this
problem was tackled by Goncharenko and Veselov [9] when they realized that Gelfand–Retakh
quasideterminants [10] may be used for this purpose. We would like to point out that although
their method gives a solution in principle, this is very complicated and difficult for practical
realization since it involves a matrix calculus with matrices defined over a noncommutative
ring and in particular it is necessary to invert such matrices.

In this paper we prove alternative formulae where only the usual determinants are involved.
They are very similar to the known Crum–Krein determinant formulae and can be considered
as their straightforward generalizations.

2. First-order transformation

We follow the definition of the Darboux transformation operator given by Goncharenko and
Veselov [9], defining it as a first-order differential operator with matrix-valued coefficients

L = L0(x) + L1(x)D (2)

intertwining h0 and h1

Lh0 = h1L (3)

where h0 is introduced above and h1 is defined by the potential V1,

h1 = −D2 + V1(x). (4)

If such an operator is found one can get eigenfunctions of h1, by the simple action of L on the
eigenfunctions of h0,

�E = L�E = (ϕ1E, . . . , ϕnE)t h1�E = E�E. (5)

Since equations (1) and (5) are homogeneous, without loss of generality we can put L1

equal to the identity, L1 = 1 (we suppose det L1 �= 0). After inserting L into the intertwining
relation (3) we get a system of equations for L0 and the transformed potential V1. It is not
difficult to find the solution to this system [9]. Thus, L is given by

L = D − F F = U ′U−1 (6)

and for the potential V1 one obtains

V1 = V0 − 2F ′. (7)

The matrix-valued function U is a solution to the equation

h0U = U� (8)

where � is a constant matrix.
The known supersymmetric approach [2–5] is based on the factorization of the

Hamiltonian

h0 = L+L + λI λ ∈ R (9)

where L+ is defined with the help of the formal relations: D+ = −D, i+ = −i, (AB)+ = B+A+

and I is the identity matrix. To compare our method with this technique let us consider the
superposition of L and its conjugate. After a simple algebra one finds

L+L = h0 − U�U−1. (10)

In particular, when � = λI , we recover the factorization (9) giving rise to the supersymmetry
with λ meaning the factorization constant. Similarly, the inverse superposition reads

LL+ = h1 − U�U−1. (11)
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If � is a diagonal matrix λ = diag(λ1, . . . , λN) then the system of equations (8) just takes
the form of the Schrödinger equation for the columns Uj = (uj,1, . . . , uj,n)

t of the matrix
U = (U1, . . . , Un)

h0Uj = λjUj j = 1, . . . , n. (12)

This means that if we know solutions of the Schrödinger equation (1) then solutions of equation
(8) are also known for the diagonal form of the eigenvalue matrix �. Therefore in what follows
we will consider only diagonal �.

3. Chains of Darboux transformations

Now we want to consider chains of transformations defined in the previous section. Chains
appear naturally if we note that if sufficiently many matrix solutions to the initial equation are
known then any such solution is transformed into a matrix solution of the new equation and,
hence, the latter may play the role of the initial equation for the next transformation step.

Suppose we know N matrix solutions of equation (8) corresponding to different eigenvalue
matrices �k �= �l ,

h0Uk = Uk�k k = 1, . . . , N. (13)

For the first transformation step we take the function U1 and according to (6) construct the
transformation operator

L1←0 = D − U ′
1U−1

1 . (14)

We note that it can be applied not only on vector-valued functions such as �E but
also on matrix-valued functions, U2, . . . ,UN . In this way we get the matrix solutions
V2 = L1←0U2, . . . ,VN = L1←0UN of the equation with the potential

V1 = V0 − 2F ′
1 F1 = U ′

1U−1
1 . (15)

Now V2 can be taken as the transformation function for the Hamiltonian h1 = −D2 + V1 to
produce the potential

V2 = V1 − 2
(
V ′

2V−1
2

)′ = V0 − 2F ′
2 F2 = F1 + V ′

2V−1
2 (16)

and the transformation operator L2←1 = D − V ′
2V

−1
2 and so on, till one obtains the potential

VN = V0 − 2F ′
N (17)

with FN defined recursively

FN = FN−1 + Y ′
NY−1

N N = 1, 2, . . . F0 = 0 (18)

and YN being the matrix-valued solution at the (N − 1)th step of transformation

YN = L(N−1)←(N−2) . . . L2←1L1←0UN ≡ L(N−1)←0UN (19)

which produces the final transformation operator LN←(N−1) = −D + Y ′
NY−1

N .
To get the final potential VN one has to calculate all intermediate transformation functions

performing substantial numerical work even for the scalar case. In practical calculations
one can perform only a few steps which restrict considerably possible applications of the
method. Fortunately, for the scalar case there exist what are called Crum [6] or Crum–Krein
[7] determinant formulae which allow one to omit all intermediate steps and go directly from
h0 to hN . The function

ϕE = |W(u1, . . . , uN,ψE)|
|W(u1, . . . , uN)| (20)
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is an eigenfunction of the Hamiltonian hN with the potential

VN = V0 − 2

( |W̃ (u1, . . . , uN)|
|W(u1, . . . , uN)|

)′
(21)

provided all uk, k = 1, . . . , N and ψE are eigenfunctions of the initial Hamiltonian h0 with
the scalar potential V0: h0 = −D2 + V0, h0uk = αkuk, h0ψE = EψE . Here and in what
follows the symbol | · | means the usual determinant, W(u1, . . . , uN) is the Wronsky matrix

W(u1, . . . , uN) =




u1 u2 . . . uN

u′
1 u′

2 . . . u′
N

. . . . . . . . . . . .

u
(N−1)
1 u

(N−1)
2 . . . u

(N−1)
N


 (22)

and the matrix W̃ (u1, . . . , uN) is obtained from W(u1, . . . , uN) by replacing its last row
composed of u

(N−1)
k with u

(N)
k , k = 1, . . . , N . Of course, the determinant |W̃ (u1, . . . , uN)|

is nothing but the derivative of the determinant of the Wronsky matrix |W(u1, . . . , uN)|,
but we write the second logarithmic derivative of the Wronskian |W(u1, . . . , uN)| in (21) as
the first derivative of the ratio of corresponding determinants to stress the similarity of this
scalar formula and its matrix generalization below. Formula (20) defines for the scalar case the
superposition of the operators of type (14) with the replacement of the matrix-valued functions
Uk by the usual functions uk ,

LN←0 = LN←(N−1) . . . L2←1L1←0 (23)

ϕE = LN←0ψE. (24)

We shall prove below generalizations of the formulae (20) and (21) to the matrix case
meaning that we shall solve the recursion defined by (18), (19) and find the superposition of
the operators (23), but first we need to introduce some new notation and to prove an additional
statement.

3.1. Notation

Define first the nN -dimensional square Wronsky matrix

W(U1, . . . ,UN) =




U1 U2 · · · UN

U ′
1 U ′

2 · · · U ′
N

. . . . . . . . . . . .

U (N−1)
1 U (N−1)

2 · · · U (N−1)
N


 . (25)

Here Uk are n × n matrices

Uk =




u1,1;k u1,2;k · · · u1,n;k
u2,1;k u2,2;k · · · u2,n;k
. . . . . . . . . . . .

un,1;k un,2;k · · · un,n;k


 k = 1, . . . , N (26)

with columns being n-dimensional vectors Uj ;k = (u1,j ;k, . . . , un,j ;k)t so that Uk =
(U1;k, . . . , Un;k), k = 1, . . . , N . We can also present Uk as a collection of rows U

j

k =
(uj,1;k, . . . , uj,n;k), j = 1, . . . , n,Uk = (

U 1
k , . . . , Un

k

)t
. It will be convenient to present (25)

also in the form

W(U1, . . . ,UN) =


 W(U1, . . . ,UN−1)

UN

U ′
N

. . .

U (N−1)
1 · · · U (N−1)

N−1 U (N−1)
N


 (27)
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stressing its recursion nature.
Introduce also the matrix

WjE(U1, . . . ,UN) =




W(U1, . . . ,UN)

�E

� ′
E

. . .

�
(N−1)
E(

U
j

1

)(N) · · · (
U

j

N

)(N)
ψ

(N)
jE


 (28)

recalling that U
j

k is the j th row of the matrix Uk .
We shall also need the following matrix:

Wi
j (U1, . . . ,UN−1) =




W(U1, . . . ,UN−1)

Ui;N
U ′

i;N
. . .

U
(N−2)

i;N(
U

j

1

)(N−1) · · · (
U

j

N−1

)(N−1)
u

(N−1)

j,i;N


 . (29)

First we note that this is the previous matrix where N is replaced with N − 1 and �E with
the vector Ui;N . Another useful remark is that the determinants

∣∣Wi
j (U1, . . . ,UN−1)

∣∣, i, j =
1, . . . , n are nothing but minors embordering the block W(U1, . . . ,UN−1) in the determinant
of the matrix (27). (For the definition of embordering minors see the appendix.)

Finally we introduce the matrices Wi,j (U1, . . . ,UN), i, j = 1, . . . , n, constructed from
the Wronsky matrix (25) where the last matrix row composed of matrices U (N−1)

k is replaced
by U ij

k , k = 1, . . . , N :

Wi,j (U1, . . . ,UN) =




U1 U2 · · · UN

U ′
1 U ′

2 · · · U ′
N

. . . . . . . . . . . .

U (N−2)
1 U (N−2)

2 · · · U (N−2)
N

U ij

1 U ij

2 · · · U ij

N


 . (30)

The matrices U ij

k , i, j = 1, . . . , n are constructed from the matrix U (N−1)
k by replacing its j th

row with the ith row of the matrix U (N)
k .

3.2. Main lemma

In this subsection we prove a lemma we are using in the proof of theorems below. Moreover, in
proving it as well as the theorems we are using the Sylvester identity [11] which is formulated
in the appendix.

Consider the matrix

A =




a1,1 · · · a1,p a1,p+1 · · · a1,p+n

. . . . . .

ap,1 · · · ap,p ap,p+1 · · · ap,p+n

b1,1 · · · b1,p b1,p+1 · · · b1,p+n

b2,1 · · · b2,p b2,p+1 · · · b2,p+n


 . (31)

Let a be the p × p submatrix of A with the entries ai,j , i, j = 1, . . . , p. Denote by mjk

the minor of A embordering a with the j th (j = 1, 2) row composed of bj,i , j = 1, 2,

i = 1, . . . , p and the kth column (p < k � p + n). Let also mts
jk be the minor obtained from

mjk by replacing its sth row composed of as,j (s � p) with the (p + t)th row composed of
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bt,i (t = 1, 2). Let now ats be obtained from a with the help of the same replacement, i.e. with
the replacement of its sth row composed of as,j (s � p) by the (p + t)th row of A composed
of bt,j (t = 1, 2).

Lemma 1. If |a| �= 0 then we have the following determinant identity

|a|mts
jk = |ats |mjk − |ajs |mtk. (32)

Proof. Consider an auxiliary square matrix

Ajt =




a1,1 · · · a1,p a1,k 0
. . . . . .

as,1 · · · as,p as,k 0
. . . . . .

ap,1 · · · ap,p ap,k 0
bj,1 · · · bj,p bj,k 1
bt,1 · · · bt,p bt,k 1




(33)

where j, t = 1, 2 and the last column contains only two nonzero entries. Take its main minor
|a|. There are only four minors of Ajt embordering |a|. Minors mjk and |a| emborder it by
the row bj,i , i = 1, . . . , p and the next to last and the last columns respectively and minors
mtk and |a| emborder it with the last row and the same columns. According to the Sylvester
identity the determinant composed of these embordering minors is equal to

mjk|a| − mtk|a| = |a||Ajt | (34)

where we can cancel |a| since it is supposed to be different from zero.
Now interchange in the matrix Ajt the sth and the last rows to get

Ãjt =




a11 · · · a1p a1k 0
. . . . . .

bt1 · · · btp btk 1
. . . . . .

ap1 · · · app apk 0
bj1 · · · bjp bjk 1
as1 · · · asp ask 0




← sth row
(35)

.

The upper-left block of this matrix of dimension p × p is the above-introduced matrix ats .
Let us find embordering minors for this submatrix. It is clear that mts

jk and −mtk emborder it
with the (p + 1)th column and the (p + 1)th and the (p + 2)th rows respectively. The minor
embordering ats with the (p + 2)th column and (p + 1)th row has in the last column only two
nonzero entries which are equal to one. Therefore we can decompose it on this column and
after corresponding interchange of the rows one gets for it the expression |ats | − |ajs |. The
last minor embordering ats with the (p + 2)th column and (p + 2)th row is equal to −|a| which
becomes evident after corresponding interchange of the rows. Once again we consider the
determinant composed of these minors and calculate it using the Sylvester identity

|Ãjt ||ats | = mtk|ats | − mtk|ajs | − |a|mts
jk. (36)

Since |Ãjt | = −|Ajt | the lemma follows from equations (34) and (36). �
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3.3. Transformation of vectors

In this subsection we formulate and prove the theorem about the transformation of a vector
�E by a chain of transformations introduced at the beginning of this section.

Theorem 1. The resulting action of a chain of Darboux transformations applied to a vector

�E = (ψ1E, . . . , ψNE)t (37)

is the vector

�E = LN←(N−1) . . . L2←1L1←0�E = (ϕ1E, . . . , ϕNE)t (38)

with the entries ϕjE given by

ϕjE = |WjE(U1, . . . ,UN)|
|W(U1, . . . ,UN)| (39)

where WjE(U1, . . . ,UN) is given in (28) and W(U1, . . . ,UN) is defined by (25).

Proof. To prove theorem 1 we are using the perfect induction method. So, first we shall prove
it for N = 1. In this case

�E = L1←0�E = (
D − U ′

1U−1
1

)
�E = (ϕ1E, . . . , ϕnE)t . (40)

Denote by Aij the cofactor of the element uj,i;1 in the matrix U1. Then according to the
definition of the inverse matrix one has

(U−1�E)j = 1

|U1|
n∑

i=1

AijψiE (41)

which for the elements of the vector �E implies

ϕlE = ∂ψlE − 1

|U1|
n∑

i,j=1

u′
l,j ;1AijψiE ≡ 	lE

|U1| . (42)

Consider now the matrix

WjE(U1) =


 U1

ψ1E

. . .

ψnE

u′
j,1;1 · · · u′

j,n;1 ψ ′
jE


 . (43)

If we decompose the determinant |WjE(U1)| on the elements of the last row and all determinants
appearing in this decomposition except for the one coinciding with |U1| decompose on the
elements of the last column, the resulting expression will coincide exactly with the numerator
of the right-hand side of (42) meaning that

ϕjE = |WjE(U1)|
|U1| (44)

which proves the assertion for N = 1.
Suppose theorem 1 holds for the chain of N − 1 transformations which means that the

following vector gives the resulting action of this chain:


E = L(N−1)←0�E = (θ1E, . . . , θnE)t (45)

where

θjE = |WjE(U1, . . . ,UN−1)|
|W(U1, . . . ,UN−1)| . (46)



246 B F Samsonov and A A Pecheritsin

Now since LN←0 = LN←(N−1)L(N−1)←0 we have to apply the first-order operator LN←(N−1) to
the vector (45) but first we need to act with L(N−1)←0 on the vectors Ui;N, i = 1, . . . , n which
form the columns of the matrix-valued transformation function UN to find the transformation
function YN = L(N−1)←0UN for the Nth transformation step and determine the operator
LN←(N−1) = −D + Y ′

NY−1
N . By supposition of (45) and (46), this result may be rewritten as

follows:

L(N−1)←0Ui;N = (y1,i , . . . , yn,i)
t (47)

yj,i =
∣∣Wi

j (U1, . . . ,UN−1)
∣∣

|W(U1, . . . ,UN−1)| i, j = 1, . . . , n. (48)

This means that the matrix YN has yj,i (48) as its entry. If we note that they coincide
up to the constant factor 1/|W(U1, . . . ,UN−1)| with the minors embordering the block
W(U1, . . . ,UN−1) in the matrix (27) we can apply the Sylvester identity to calculate the
determinant |YN |:

|YN | = |W(U1, . . . ,UN)|
|W(U1, . . . ,UN−1)| . (49)

We need this determinant since the action of the first-order Darboux transformation operator
on a vector is given by (40), (43) and (44) meaning that the vector

�E = [
D − Y ′

NY−1
N

]

E (50)

has the entries

ϕjE = ∣∣Y j

NE

∣∣/|YN | j = 1, . . . , n (51)

with

Y
j

NE =


 YN

θ1E

. . .

θnE

y ′
j,1 · · · y ′

j,n θ ′
jE


 . (52)

To calculate the entries of Y
j

NE we have to differentiate yj,i (48):

y ′
j,i = −|W(U1, . . . ,UN−1)|′

|W(U1, . . . ,UN−1)| yj,i +

∣∣Wi
j (U1, . . . ,UN−1)

∣∣′
|W(U1, . . . ,UN−1)| . (53)

Now we first calculate the derivative of the determinant
∣∣Wi

j

∣∣ keeping in this expression the
derivative of its last row as a separate term

∣∣Wi
j (U1, . . . ,UN−1)

∣∣′ = �ji +
n∑

m=1(�=j)

	m
ji . (54)

Here �ji is the determinant of the same matrix (29) where only the last row is differentiated
and 	m

ji is the determinant of the same matrix where in the last matrix row of the block

W(U1, . . . ,UN−1) one has to differentiate only the mth row of the matrices U (N−2)
k , k =

1, . . . , N .
We note that the matrix of the determinant 	m

ji can also be obtained by interchanging one

of the rows of matrices U (N−2)
k with a row of matrices U (N−1)

k , k = 1, . . . , N in the minor∣∣Wi
j (U1, . . . ,UN−1)

∣∣ when it is considered as a minor embordering the block W(U1, . . . ,UN−1)

in the matrix (27). This matrix contains two rows with the derivatives of the (N −1)th order of
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elements of matrices Uk in contrast with any minor embordering the block W(U1, . . . ,UN−1)

in the matrix (27) which contains only one such row. Therefore there is no way to apply the
Sylvester identity for calculating this determinant. Just for this purpose we have proved our
main lemma which yields

|W(U1, . . . ,UN−1)|	m
ji = |Wmm(U1, . . . ,UN−1)|

∣∣Wi
j (U1, . . . ,UN−1)

∣∣
− |Wjm(U1, . . . ,UN−1)|

∣∣Wi
m(U1, . . . ,UN−1)

∣∣. (55)

Now from (54) and (55) one obtains

∣∣Wi
j (U1, . . . ,UN−1)

∣∣′ = 1

|W(U1, . . . ,UN−1)|


�ji |W(U1, . . . ,UN−1)|

+
n∑

m=1(�=j)

[|Wmm(U1, . . . ,UN−1)|
∣∣Wi

j (U1, . . . ,UN−1)
∣∣

− |Wjm(U1, . . . ,UN−1)|
∣∣Wi

m(U1, . . . ,UN−1)
∣∣]


 . (56)

Inserting this into (53) and taking into account the relation

|W(U1, . . . ,UN−1)|′ =
n∑

m=1

|Wmm(U1, . . . ,UN−1)| (57)

which is a direct consequence of the structure of the matrices W(U1, . . . ,UN−1) and
Wmm(U1, . . . ,UN−1) we obtain

y ′
j,i = 1

|W(U1, . . . ,UN−1)|

[
�ji −

n∑
m=1

|Wj,m(U1, . . . ,UN−1)|ym,i

]
. (58)

By the same means for the vector 
E (45) we can get a similar relation.
Thus, the determinant of the matrix (52) can be written as a sum of the two other

determinants one of which has the last row as a linear combination of other rows and, hence,
this determinant vanishes. The matrix of another determinant consists of minors embordering
the block W(U1, . . . ,UN−1) in the determinant (28) (up to a common factor). Applying once
again the Sylvester identity one finally obtains∣∣Y j

NE

∣∣ = |WjE(U1, . . . ,UN−1)|
|W(U1, . . . ,UN−1)| (59)

which together with (50), (51) and (49) proves the theorem. �

3.4. Transformation of potential

According to (17), to find the potential resulting from a chain of N Darboux transformations
we have to resolve the recursion defined in (18) and (19). This is done by the following:

Theorem 2. Let the matrix FN be defined by the recursion FN = FN−1 +Y ′
NY−1

N ,N = 1, 2, . . .

with the initial condition F0 = 0 and YN = L(N−1)←0UN with the operator L(N−1)←0 =
L(N−1)←(N−2) · . . . · L2←1 · L1←0 defined in theorem 1. Then the elements f N

i,j of the matrix
FN are expressed in terms of transformation functions Uk, k = 1, . . . , N as follows,

f N
i,j = |Wij (U1, . . . ,UN)|

|W(U1, . . . ,UN)| (60)

where W(U1, . . . ,UN) is defined in (25) and Wij (U1, . . . ,UN) is given by (30).
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Proof. This theorem is also proved by the perfect induction method. For N = 1 one has
Y1 = U1 and W(U1) = U1. Equation (60) follows from inverting the corresponding matrix.

Suppose that the theorem holds for N − 1 transformations meaning that the matrix FN−1

has the entries

f N−1
i,j = |Wij (U1, . . . ,UN−1)|

|W(U1, . . . ,UN−1)| . (61)

To prove the statement we have to calculate the value F̃ N = Y ′
NY−1

N . The matrix Y ′
N has

the derivatives (58) as its entries. Now since

(
Y−1

N

)
i,j

= 1

|YN |Aji (62)

where Aij is the cofactor of the element (YN)i,j in the matrix YN , then for the entries of the
matrix F̃ N one has

f̃ N
i,j = 1

|W(U1, . . . ,UN−1)|
1

|YN |
n∑

l=1

[
�ilAjl −

n∑
m=1

|Wim(U1, . . . ,UN−1)|ym,lAjl

]
. (63)

To calculate the first term in the square brackets in (63) we use the equation

n∑
l=1

�ilAjl = ∣∣Y ij

N

∣∣|W(U1, . . . ,UN−1)| (64)

where Y
ij

N is the matrix obtained from YN by replacing in its j th row the determinants∣∣Wl
j (U1, . . . ,UN−1)

∣∣ (see equation (48)) with �il, l = 1, . . . , n defined in the proof of the

previous theorem, which follows directly from the decomposition of the determinant
∣∣Y ij

N

∣∣ on
its j th row containing �il/|W(U1, . . . ,UN−1)|. Another relation to be used here is the product
of a matrix with its inverse written in terms of matrix elements

n∑
k=1

yikAjk = δij . (65)

Now we rewrite equation (63) as follows:

f̃ N
ij =

∣∣Y ij

N

∣∣
|YN | − |Wij (U1, . . . ,UN−1)|

|W(U1, . . . ,UN−1)| . (66)

According to (61) the last term in (66) represents the elements of the matrix FN−1. As a
result for the entries of the matrix FN one gets

f N
i,j =

∣∣Y ij

N

∣∣
|YN | . (67)

The final comment is that the determinants representing numerators of the elements of the
matrix Y

ij

N (we recall that it coincides with the matrix YN composed of the elements (48)
except for the j th row composed of the elements �il/|W(U1, . . . ,UN−1)|) are up to the
factor 1/|W(U1, . . . ,UN−1)| the minors embordering the block W(U1, . . . ,UN−1) in the matrix
Wij (U1, . . . ,UN) and the application of the Sylvester identity yields

∣∣Y ij

N

∣∣ = |Wij (U1, . . . ,UN)|
|W(U1, . . . ,UN−1)| . (68)

This equation together with (67) and the expression (49) for |YN | proves the theorem. �
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4. Conclusion

As a concluding remark we would like to mention that the field of application of the theorems
we have just proved is not restricted only by the matrix Schrödinger equation. In their proof
we have never used the fact that the transformation functions Uk are solutions to an equation.
Actually, we obtained a solution to a special recursion scheme and, hence, our results may
be useful in solving problems where such a scheme appears. For instance, while applying
the Darboux algorithm to the stationary Dirac equation we have obtained similar recurrence
relations [12].

Another possible application of the above results is related to the realization of phase
equivalent chains of transformations for the inverse spectral problem on a semiaxis. Recently
conditions on transformation functions have been established for chains of one channel
Darboux transformations leading to different phase equivalent potentials [8]. In this way
one was able to correct undesirable oscillation of the tail of a shallow potential which was
previously obtained in [13] in the frame of the usual supersymmetry approach. The method
provides us also with the possibility to get the correct phase shift effective range expansion for
radial problems with higher angular momenta (see the second reference of [8]). We hope that
the theorems we have established here open the way for working with matrix equations (i.e.
Schrödinger or Dirac) almost in such an easy way as is done for the scalar case, and similar
investigations are now possible for the multichannel problem.
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Appendix

Here we formulate the Sylvester identity [11]. Consider a square matrix of dimension
p + q, p, q = 1, 2, . . .

A =




a1,1 · · · a1,p a1,p+1 · · · a1,p+q

. . . . . .

ap,1 · · · ap,p ap,p+1 · · · ap,p+q

b1,1 · · · b1,p b1,p+1 · · · b1,p+q

. . . . . .

bq,1 · · · bq,p bq,p+1 · · · bq,p+q




. (A1)

Let a be the submatrix of dimension p ×p composed of the elements ai,j , i, j = 1, . . . , p. If
to the bottom of a we add a line of elements bk,1, . . . , bk,p, to the right of a we add a column
of elements a1,p+l , . . . , ap,p+l and the right bottom corner we fill with the element bk,p+l , we
obtain a square matrix mj,l . One says that mj,l is obtained from A by embordering the block
a with kth row and (p + l)th column. The determinant |mj,l| is called an embordering minor
in the determinant |A|. Since k and l can take the values k, l = 1, . . . , q one has q × q

embordering minors from which one can construct the matrix M = (mj,l). The Sylvester
identity relates the determinants |M|, |A| and |a| as follows:

|M| = |a|q−1|A|. (A2)
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